The Crystal Structure of Rubidium Hydrogen Oxydiacetate. A Comparison of Crystallographically Independent Oxydiacetate Ions

By J.Albertsson, I. Grenthe and H. Herbertsson
Inorganic Chemistry 1 and Physical Chemistry 1, Chemical Center, University of Lund, P.O.B. 740, S-220 07 Lund, Sweden

(Received 22 June 1973; accepted 23 June 1973)

Abstract

In a study of the hydrogen-bond system in the alkali hydrogen salts of oxydiacetic acid the crystal and molecular structures of $\mathrm{RbHO}\left(\mathrm{CH}_{2} \mathrm{COO}\right)_{2}$ have been determined from X-ray intensities collected with a four-circle diffractometer. The crystals are tetragonal, space group $I \overline{4} 2 d$, with $a=8 \cdot 4814$ (2), $c=$ 18.0985 (9) $\AA, Z=8$. The structure has been refined to $R=0.028, R_{w}=0.054$. It is built up of infinite chains of oxydiacetate ions linked by short, symmetric hydrogen bonds. The chains are cross-linked by rubidium ions. The hydrogen-oxygen distance in the hydrogen bond is $1.23 \AA$ and the oxygen-oxygen distance $2 \cdot 45$ (1) \AA. The molecular structures of a number of oxydiacetate residues determined in various alkali hydrogen oxydiacetates and tris(oxydiacetato)lanthanoidate(III) complexes by X-ray and neutron single-crystal diffractometry are compared by half-normal probability plots.

Introduction

In a previous communication the X-ray structure determinations of the isostructural sodium and potassium hydrogen oxydiacetates (NaHOXY and KHOXY) have been described (Albertsson, Grenthe \& Herbertsson, 1973). As is often the case with acid salts of simple symmetric dicarboxylic acids, these structures contain infinite chains of hydrogen-bonded dicarboxylate residues. Speakman (1972) has recently reviewed the crystal structures of a number of acid dicarboxylate salts. Normally the linking hydrogen bond lies across an element of twofold crystallographic symmetry. In NaHOXY and KHOXY there is no such symmetry element between the oxydiacetate ions and the hydrogen bond is asymmetric with oxygen-oxygen distances of $2 \cdot 462$ (3)* and $2 \cdot 480$ (2) \AA, respectively.
This paper reports the X-ray structure of rubidium hydrogen oxydiacetate (RbHOXY) which also contains infinite chains of hydrogen-bonded oxydiacetate ions but with twofold axes between the dicarboxylate residues of the chain. KHOXY and RbHOXY have also been studied by single-crystal neutron diffractometry to make a more thorough comparison of the two types of structures. The results will be described in a subsequent paper (Albertsson \& Grenthe, 1973).

The aim of the present investigation was to obtain accurate dimensions for the oxydiacetate ion. In this paper various crystallographically independent hydrogen oxydiacetate and oxydiacetate ions are compared by the method of half-normal probability plots (De Camp, 1973; Abrahams \& Keve, 1971).

[^0]
Experimental

Colourless crystals, tabular \mathbf{c}, of RbHOXY were prepared by slow evaporation at room temperature of an aqueous solution of equimolar amounts of oxydiacetic acid and rubidium hydroxide. The composition of the crystals was checked by elemental analysis of C and H . Oscillation and Weissenberg photographs showed that RbHOXY crystallizes in the Laue class $4 / \mathrm{mmm}$ with the reflexions $h k l: h+k+l \neq 2 n$ and $h h l: 2 h+l \neq 4 n$ systematically absent. Possible space groups are thus $I 4_{1} m d$ and $I \overline{4} 2 d$ (Nos. 109 and 122, respectively). The lattice constants were improved by least-squares refinement from the powder pattern obtained at room temperature with a Guinier-Hägg camera of radius 4.00 $\mathrm{cm} . \mathrm{Cu} K \alpha$ radiation was used with aluminium ($a=$ $4 \cdot 04934 \AA$) as internal standard. The density D_{m} was determined by the displacement method in benzene.
Caesium and thallium(I) hydrogen oxydiacetates are isostructural with RbHOXY. Their crystal data have been determined in the same way.

Crystal data

(1) Rubidium hydrogen oxydiacetate, $\mathrm{RbC}_{4} \mathrm{H}_{5} \mathrm{O}_{5}$; F.W. 218.6. Tetragonal; space group $I \overline{4} 2 d ; a=$ 8.4814 (2),$\quad c=18.0985$ (9) $\AA, \quad V=1301.9 \AA^{3} ; \quad Z=8$; $D_{m}=2 \cdot 25, D_{x}=2 \cdot 230 \mathrm{~g} \mathrm{~cm}^{-3}$.
(2) Caesium hydrogen oxydiacetate, $\mathrm{CsH}_{4} \mathrm{H}_{5} \mathrm{O}_{5}$; F.W. $266 \cdot 0 . a=8 \cdot 8095$ (4),$\quad c=18 \cdot 1120$ (12) $\AA, \quad V=$ $1405.6 \AA^{3} ; D_{m}=2.52, D_{x}=2.514 \mathrm{~g} \mathrm{~cm}^{-3}$.
(3) Thallium(I) hydrogen oxydiacetate, $\mathrm{TlC}_{4} \mathrm{H}_{5} \mathrm{O}_{5}$; F.W. $337 \cdot 5 . \quad a=8 \cdot 4668$ (2),$\quad c=18 \cdot 1180$ (7) $\AA, \quad V=$ $1298 \cdot 8 \AA^{3} ; D_{m}=3 \cdot 49, D_{x}=3 \cdot 451 \mathrm{~g} \mathrm{~cm}^{-3}$.

The layers $0 k l-7 k l$ of RbHOXY were recorded by the non-integrated Weissenberg multiple-film tech-
nique with Ni -filtered Cu radiation. The intensities of 348 independent reflexions were estimated visually, and, after correction for Lorentz and polarization effects, were used to solve the structure.

The refinement of the model thus obtained was based on diffractometer data. A crystal, tabular c, with dimensions $0.18 \times 0.18 \times 0.06 \mathrm{~mm}$ and bounded by the faces $\{100\}$ and $\{001\}$ was arbitrarily mounted on the computer controlled four-circle diffractometer CAD-4 (manufactured by Enraf-Nonius, Delft, Holland) equipped with a graphite monochromator. $\mathrm{Cu} K \alpha$ radiation was employed ($\lambda=1.54178 \AA$) with a take-off angle of 5°. The intensities were recorded with the $\omega-2 \theta$ scan technique. The scan interval varied as $\omega=$ $1.00+0.15 \tan \theta$ where the term $0.15 \tan \theta$ is a correction for the $\alpha_{1}-\alpha_{2}$ separation. The aperture of the scintillation detector, which is situated 173 mm from the crystal, was $4 \times 4 \mathrm{~mm}^{2}$. A fast pre-scan was used to determine a scan speed at which a predetermined minimum number of counts (3000) were received by the detector. The background was measured for $\frac{1}{4}$ of the scan time at each end of the interval. The intensities of 1468 reflexions were recorded with repeated scans. The investigated reciprocal region consists of all reflexions with $5 \leq \theta<30^{\circ}$ and the reflexions with positive h, k, and l and $h \leq k$ for $30 \leq \theta<70^{\circ}$. Owing to a ratemeter failure, 63 reflexions had to be excluded because they did not obey the condition $\left(I_{1}-I_{2}\right)^{2} \leq$ $8\left(I_{1}+I_{2}\right)$ after three attempts, where I_{1} and I_{2} are the intensities in two successive scans of a reflexion. Another 52 reflexions with $I<2 \sigma_{C}(I)$ were judged to be insignificantly different from the background and were also excluded. The values of $\sigma_{c}(I)$ are based on counting statistics. To check the stability of the crystal and electronics, two reference reflexions (204 and 004) were measured at regular intervals during the data collection. No variation in their intensities was detected.

The values of I and $\sigma_{c}(I)$ were corrected for Lorentz, polarization, and absorption effects. The expression $p=\left(1+\cos ^{2} 2 \theta_{M} \cos ^{2} 2 \theta\right) /\left(1+\cos ^{2} 2 \theta_{M}\right)$ with $\theta_{M}=13 \cdot 3^{\circ}$ was used in the correction of the polarization effects. The linear absorption coefficients is $113.5 \mathrm{~cm}^{-1}$ and the transmission factor evaluated by numerical integration varied in the interval $0 \cdot 197-0 \cdot 512$.

Structure determination and refinement

The choice of the space group for RbHOXY is based on symmetry considerations assuming the structure to be built up of hydrogen oxydiacetate chains running in the \mathbf{c} direction. In $I \overline{4} 2 d$ the eight ether oxygen atoms in a unit cell can be placed on twofold axes making the two halves of each oxydiacetate ion equivalent. The molecules in each chain are then also related by twofold axes and the chains by the fourfold inversion axes. In the space group $14_{1} \mathrm{md}$, all the non-hydrogen atoms of the oxydiacetate ion would have to be located in the four planes $x=0, \frac{1}{2}$ and $y=0, \frac{1}{2}$ [positions $8(b)$] to
avoid assumptions about a statistical distribution of this ion in the structure. The rubidium ions were located on the lines $x=y=0 ; x=0, y=\frac{1}{2} ; x=\frac{1}{2}, y=0$; and $x=y=\frac{1}{2}$ in the three-dimensional vector map. The subsequent difference map showed positions near the plane $y=\frac{1}{4}$ for all non-hydrogen atoms of the oxydiacetate ion. All the following calculations have therefore been carried out in the space group $I \overline{4} 2 d$.

336 non-zero reflexions with h, k, and l positive and $h \leq k$ were used in the first series of refinements. The function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$. Each reflexion was given a weight w inversely proportional to the estimated variance of the observation $w^{-1}=$ $\sigma^{2}\left(\left|F_{o}\right|\right)=\sigma_{c}^{2}\left(\left|F_{o}\right|^{2}\right) / 4\left|F_{o}\right|^{2}+C_{1}\left|F_{o}\right|^{2}+C_{2}$, where C_{1} and C_{2} are adjustable constants. The convergence was followed by the conventional R and the weighted R defined by $R_{w}=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w\left|F_{o}\right|^{2}\right]^{1 / 2}$. With $C_{1}=$ $9.10^{-4}, C_{2}=0$, and anisotropic temperature factors assigned to all the non-hydrogen atoms, $R=0.039$ and $R_{w}=0.065$ were obtained. The values of C_{1} and C_{2} were varied until a good fit was obtained with $C_{1}=$ 16.10^{-4} and $C_{2}=5.0$ resulting in $R=0.036$ and $R_{w}=$ $0 \cdot 051$. A difference map revealed approximate positions for the hydrogen atoms.

All 1468 values of $\left|F_{o}\right|^{2}$ and $\sigma_{c}\left(\left|F_{o}\right|^{2}\right)$ were sorted in groups of equivalent reflexions and the mean values within each group calculated to give a new set of independent data containing 353 non-zero values of $\left|F_{o}\right|$. The positional parameters for the hydrogen atoms were included in the refinement with fixed temperature factors $B=5 \AA^{2}$. The standard deviations of the parameters were fairly large and the shifts oscillated about one standard deviation in each cycle of refinement. Hence, no accurate hydrogen parameters could be obtained. As the neutron diffraction study of the structure had been completed (Albertsson \& Grenthe, 1973) the positional parameters for the hydrogen atoms were taken from that work. They were not varied in the following calculations. With $C_{1}=16 \cdot 10^{-4}$ and $C_{2}=$ 8.0 the average value of $w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ in different $\left|F_{o}\right|$ and $\sin \theta$ intervals was fairly constant. The final agreement indices were $R=0.028$ and $R_{w}=0.054$. Inclusion of an isotropic extinction correction (Zachariasen, 1967) gave no improvement and only two reflexions appeared to be affected. A final difference map was featureless.

Table 1. Atomic coordinates for RbHOXY with standard deviations ($\times 10^{4}$)

	x	y	z
Rb	0^{\prime}	0	$1162(1)$
$\mathrm{O}(1)$	$2492(10)$	2500	1250
$\mathrm{O}(2)$	$1010(6)$	$2559(8)$	$-40(3)$
$\mathrm{O}(3)$	$3244(7)$	$2607(9)$	$-671(3)$
$\mathrm{C}(1)$	$3440(9)$	$2568(13)$	$609(4)$
$\mathrm{C}(2)$	$2387(14)$	$2612(15)$	$-64(8)$
$\mathrm{H}(1)$	2500	2676	-1250
$\mathrm{H}(2)$	4241	1550	580
$\mathrm{H}(3)$	4174	3631	609

The atomic coordinates with their estimated standard deviations are listed in Table 1. The thermal parameters and the root-mean-square components of
thermal displacement along the principal axes of the ellipsoids of vibration are given in Table 2. The observed and calculated structure factors are listed in

Table 2. Anisotropic thermal parameters with standard deviations $\left(\times 10^{4}\right)$
The form of the temperature factor is $\exp \left(-\beta_{11} h^{2}-\ldots 2 \beta_{12} h k-\ldots\right)$. The root-mean square-components R_{t} with standard deviations ($\times 10^{3} \AA$) of thermal displacement along the ellipsoid axes are also listed.

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	R_{1}	R_{2}	R_{3}
Rb	$94(1)$	$110(2)$	$25(1)$	$9(2)$	0	0	$182(2)$	$202(2)$	$204(2)$
$\mathrm{O}(1)$	$77(9)$	$135(11)$	$12(2)$	0	0	$-7(4)$	$139(12)$	$168(9)$	$224(9)$
$\mathrm{O}(2)$	$100(8)$	$168(10)$	$19(1)$	$1(8)$	$-5(3)$	$-1(4)$	$170(8)$	$196(8)$	$247(7)$
$\mathrm{O}(3)$	$133(9)$	$133(10)$	$16(2)$	$21(10)$	$15(3)$	$11(4)$	$146(9)$	$208(9)$	$242(9)$
$\mathrm{C}(1)$	$89(11)$	$131(12)$	$14(2)$	$0(12)$	$7(4)$	$-5(5)$	$140(13)$	$187(11)$	$220(10)$
$\mathrm{C}(2)$	$82(11)$	$71(11)$	$18(3)$	$11(11)$	$-2(7)$	$-6(5)$	$149(15)$	$169(19)$	$188(16)$

Table 3. Observed and calculated structure factors
The reflexions are sorted in groups with h and k constant. In each group $10\left|F_{o}\right|$ and $10\left|F_{c}\right|$ are given after the running index l.

Fig. 1. A stereoscopic pair of drawings showing the content of a unit cell of RbHOXY.

Table 3. The atomic scattering factors were taken from Hanson, Herman, Lea \& Skillman (1964). The calculations were performed on the UNIVAC 1108 computer in Lund. A short account of the program system used is given by Oskarsson (1973).

Description of the structure

The structure is shown in Fig. 1. The oxydiacetate residues are linked in infinite chains by short hydrogen bonds across twofold axes. The chains run in the \mathbf{c} direction along the four lines $x=y=\frac{1}{4} ; x=\frac{1}{4}, y=\frac{3}{4}$; $x=\frac{3}{4}, y=\frac{1}{4} ;$ and $x=y=\frac{3}{4}$ with the non-hydrogen atoms located near the planes $y=\frac{1}{4}, x=\frac{1}{4} ; x=\frac{3}{4}$, and $y=\frac{3}{4}$, respectively. The chains are crosslinked by rubidium ions. In NaHOXY and KHOXY all the oxydiacetate planes are parallel but in RbHOXY there are two perpendicular sets of parallel planes.

There is a twofold crystallographic symmetry in the oxydiacetate residue in RbHOXY with the ether oxygen atom on a twofold axis. The ion is shown in Fig. 2. Its interatomic distances and angles are given in Table 4. Distances from the least-squares planes through the non-hydrogen atoms are given in Table 5. Within the limits of error these atoms are coplanar, which means that the oxydiacetate residue has very nearly $m m$ symmetry.

The results obtained for the hydrogen bond are given in Table 6. Again it should be pointed out that

Fig. 2. The oxydiacetate residue and the hydrogen bond. The thermal ellipsoids for the non-hydrogen atoms are scaled to include 50% probability.

Table 4. Selected interatomic distances and angles for the ligand in RbHOXY

$\mathrm{O}(1)-\mathrm{C}(1)$	$1 \cdot 413(8) \AA$	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}\left(1^{\mathrm{i}}\right)$	$110 \cdot 7(8)^{\circ}$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.511(14)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$109 \cdot 1(8)$
$\mathrm{C}(2)-\mathrm{O}(2)$	$1 \cdot 170(13)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$124.0(13)$
$\mathrm{C}(2)-\mathrm{O}(3)$	$1.317(16)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	$110 \cdot 2(9)$
$\mathrm{O}(1)-\mathrm{O}(2)$	$2 \cdot 652(6)$	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{O}(3)$	$125 \cdot 7(11)$
$\mathrm{C}(1)-\mathrm{H}(2)$	$1 \cdot 10$	$\mathrm{H}(2)-\mathrm{C}(1)-\mathrm{H}(3)$	$107 \cdot 1$
$\mathrm{C}(1)-\mathrm{H}(3)$	1.10		

Table 5. Deviations from the least-squares planes through the non-hydrogen atoms for the ligand in RbHOXY
The lower signs refer to the superscripted atoms. The angle between the ligand halves is 1°.

Whole ligand		Independent ligand-half	
$\mathrm{O}(1)$	$0.000 \AA$	$\mathrm{O}(1)$	$0.11 \AA$
$\mathrm{C}(1), \mathrm{C}\left(1^{1}\right)$	∓ 0.023	$\mathrm{C}(1)$	0.005
$\mathrm{C}(2), \mathrm{C}\left(2^{i}\right)$	∓ 0.025	$\mathrm{C}(2)$	0.016
$\mathrm{O}(2), \mathrm{O}\left(2^{i}\right)$	± 0.019	$\mathrm{O}(2)$	-0.008
$\mathrm{O}(3), \mathrm{O}\left(3^{1}\right)$	± 0.012	$\mathrm{O}(3)$	-0.025

Table 6. The hydrogen bond in RbHOXY

$\mathrm{O}(3) \cdots \mathrm{O}\left(3^{11}\right)$	$2 \cdot 448(12) \AA$
$\mathrm{O}(3)-\mathrm{H}(1)$	$1 \cdot 23$
$\mathrm{O}(3)-\mathrm{H}(1)-\mathrm{O}\left(3^{11}\right)$	$174 \cdot 5^{\circ}$
$\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{H}(1)$	115.4

the hydrogen atoms have been placed in the positions obtained in the neutron diffraction study. The hydrogen bond is short, the distance $\mathrm{O}(3)-\mathrm{O}\left(3^{\mathrm{ii}}\right)^{*}$ being 2.45 (1) \AA. It is slightly bent and the hydrogen atom is most probably situated on the twofold axis between the bonded oxydiacetates. The donor and acceptor $\mathrm{C}-\mathrm{O}-\mathrm{H}$ angles are then equal with the value 115°, which is the same as found in NaHOXY and KHOXY.
The alkali metal ion in NaHOXY and KHOXY is surrounded by seven oxygen atoms forming a penta-

* For superscripted atoms, see legend to Table 7.

Fig. 3. A stereoscopic pair of drawings showing the chains of octahedra around the rubidium ions.
gonal bipyramid. In RbHOXY the rubidium ion has eight oxygen neighbours (Table 7). The six nearest form a distorted octahedron with the remaining two oxygen atoms outside two adjacent triangular faces of the polyhedron (Figs. 1 and 3). By sharing of the O (1) corners, the octahedra are connected in infinite chains
running in the \mathbf{a} and \mathbf{b} directions along the lines $x=0$, $z=\frac{1}{8} ; y=\frac{1}{2}, z=\frac{3}{8} ; x=\frac{1}{2}, z=\frac{5}{8}$; and $y=0, z=\frac{7}{8}$ (Fig. 3). This type of crosslinking agrees with the fact that the spacing in the \mathbf{c} direction is very little affected by the cation in the series RbHOXY, CsHOXY, and TIHOXY, while that in the \mathbf{a} and \mathbf{b} directions varies

Fig. 4. Half-normal probability plots of independent molecular geometries of the oxydiacetate ion. The compared ciystal structures are given above each plot. The following four members are given for each plot: the number of values included, the number of points with $\delta m_{i}<2 \cdot 50$, the slope of the least-squares line through the latter points, and the intercept of the least-squares line on the ordinate. (a) $64,58,1 \cdot 52,-0 \cdot 10 ;(b) 64,53,1 \cdot 69,0 \cdot 31 ;(c) 15,14,1 \cdot 64,-0 \cdot 40 ;(d) 21,20,1 \cdot 30,-0 \cdot 13$; (e) 21, 13, 2.58, $-0 \cdot 36 ;(f) 63,32,3 \cdot 35,-0 \cdot 14 ;(g) 15,14,1 \cdot 20,0 \cdot 22 ;(h) 15,14,1 \cdot 42,-0.29 ;(i) 14,10.1 \cdot 88,-0 \cdot 14$.
with the size of the cation. When the somewhat larger rubidium or caesium ion is used instead of the sodium or potassium ion, the changed packing of the infinite hydrogen oxydiacetate chains building up the structure enhances the symmetry of the compound. The short hydrogen bond connecting the oxydiacetate residues in both cases is changed from an asymmetric bond in NaHOXY and KHOXY to a symmetric bond in RbHOXY.

Table 7. The nearest neighbour oxygen atoms around the rubidium ion

Symmetry-related sites are denoted by (i) $x, \frac{1}{2}-y, \frac{1}{4}-z$; (ii) $\frac{1}{2}-x, y,-\frac{1}{4}-z$; (iii) \bar{y}, x, \bar{z}; (iv) $y,-\frac{1}{2}+x, \frac{1}{4}+z$.

$\mathrm{Rb}-\mathrm{O}(1)$	$2.998(6) \AA$
$\mathrm{Rb}-\mathrm{O}(2)$	$3.190(6)$
$\mathrm{Rb}-\mathrm{O}\left(2^{\text {iii }}\right)$	$3.093(6)$
$\mathrm{Rb}-\mathrm{O}\left(3^{\mathrm{iv}}\right)$	$2.927(7)$

The oxydiacetate ion

The molecular structure of the oxydiacetate ion has been investigated in a number of compounds. X-rays have been used for the alkali hydrogen oxydiacetates NaHOXY, KHOXY, and RbHOXY and neutrons for KHOXY and RbHOXY (Albertsson, Grenthe \& Herbertsson, 1973; Albertsson \& Grenthe, 1973). One of the present authors has also investigated the tris(oxydiacetato)lanthanoidate complexes
$\mathrm{Na}_{3}\left[\mathrm{M}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)_{3}\right] \cdot 2 \mathrm{NaClO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{M}=\mathrm{Nd}$ (NDG), Gd (GDG), and Yb (YDG) (Albertsson, 1968, 1970). DG is an abbreviation for diglycollate which is the trivial name of oxydiacetate. In the lanthanoid compounds the hydrogen atoms were not located.

To compare the crystallographically independent oxydiacetate ions in the various structures we have used the method of half-normal probability plots (De Camp, 1973). Interatomic distances less than $4.65 \AA$ are used as coordinates of the ion. Observed ranked values of $\delta m_{i}=\mid d(1)_{i}-d(2)_{i} /\left[\sigma^{2} d(1)_{i}+\sigma^{2} d(2)_{i}\right]^{1 / 2}$ are plotted versus the expected values δx_{i} calculated according to Hamilton \& Abrahams (1972). The quantities $d(1)_{i}$ and $d(2)_{i}$ are the corresponding intramolecular distances in the compared structures with estimated standard deviations $\sigma d(1)_{i}$ and $\sigma d(2)_{i}$. Representative results are given in Fig. 4.

There is no obvious difference between the oxydiacetate residues in the X-ray structures of NaHOXY and KHOXY [Fig. 4(a)]. The same result is arrived at when the X-ray and neutron structures of the residue in KHOXY and RbHOXY, respectively, are compared [Fig. $4(b)$ and (c)] despite the systematic error introduced in KHOXY by comparing $\mathrm{C}-\mathrm{H}$ distances determined by X-ray and neutron diffractometry. The plots are linear with slopes of $1.52,1.69$, and 1.64 for the least-squares lines through points with δm_{i} less than $2 \cdot 50$. The intercepts lie near the origin indicating that no great systematic differences are present (Abrahams \& Keve, 1971). If this is true the slopes can be taken as measures of the reliability of the estimated
standard deviations. From Fig. $4(a)-(c)$ and a number of other probability plot comparisons we conclude that in general the standard deviations for interatomic distances and angles are underestimated by a factor of about 1.7 in our investigation of the alkali hydrogen oxydiacetates.
The two halves of the oxydiacetate residue in NaHOXY and KHOXY are crystallographically independent. The halves in the X-ray and neutron structures of KHOXY, respectively, are compared in Fig. $4(d)$ and (e). The standard deviations are multiplied by the factor 1.7 . The estimated errors for the hydrogen atoms in the neutron structure are about ten times smaller than in the X -ray structure. This results in a detectable difference between the two halves in the neutron structure but not in the X-ray structure. The CH_{2} groups are not identically located relative to the carboxylic groups and there is a difference in the singlebonded carboxylic C-O distances caused by the hy-drogen-bond system. This difference between the ligand halves in the neutron structure of KHOXY is also a reason for the non-linear plot seen in Fig. $4(f)$, where a comparison with the ligand in the neutron structure of RbHOXY is made. Only one of the ligand halves in KHOXY is compatible with the ligand half in RbHOXY. Another difference between KHOXY and RbHOXY is that the acetic acid residues are slightly twisted in the former complex but nearly coplanar in the latter.
There are no great differences in the oxydiacetate ligand in lanthanoid tris-complexes [Fig. $4(g)$ and (h)]. The slopes 1.20 and 1.42 of the least-squares lines through points with δm_{i} less than 2.50 again indicate that the standard deviations have been underestimated. However, the errors involved are so large that the ligand in GDG is compatible with the oxydiacetate residue in, e.g., the neutron structure of RbHOXY [Fig. 4(i)] in spite of the different bonding situation in the - COO groups.

This work was supported by the Swedish Natural Science Research Council.

References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A 27, 157-165.
Albertsson, J. (1968). Acta Chem. Scand. 22, 1563-1578. Albertsson, J. (1970). Acta Chem. Scand. 24, 3527-3541. Albertsson, J. \& Grenthe, I. (1973). To be published.
Albertsson, J., Grenthe, I. \& Herbertsson, H. (1973). Acta Cryst. B29, 1855-1860.
De Camp, W. H. (1973). Acta Cryst. A29, 148-150.
Hamilton, W. C. \& Abrahams, S. C. (1972). Acta Cryst. A28, 215-219.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Oskarsson, Å. (1973). Acta Cryst. B29, 1747-1751.
Speakman, J. C. (1972). Structure and Bonding. Vol. 12, pp. 141-199. Berlin: Springer-Verlag.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

[^0]: * Estimated standard deviations referring to the least significant digits are given in parentheses.

